Lattice path matroids: enumerative aspects and Tutte polynomials

نویسندگان

  • Joseph E. Bonin
  • Anna de Mier
  • Marc Noy
چکیده

Fix two lattice paths P and Q from ð0; 0Þ to ðm; rÞ that use East and North steps with P never going above Q: We show that the lattice paths that go from ð0; 0Þ to ðm; rÞ and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroids and we study three important matroid invariants, namely the Tutte polynomial and, for special types of lattice path matroids, the characteristic polynomial and the b invariant. In particular, we show that the Tutte polynomial is the generating function for two basic lattice path statistics and we show that certain sequences of lattice path matroids give rise to sequences of Tutte polynomials for which there are relatively simple generating functions. We show that Tutte polynomials of lattice path matroids can be computed in polynomial time. Also, we obtain a new result about lattice paths from an analysis of the b invariant of certain lattice path matroids. r 2003 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Transversal Matroids

1. Prefatory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Several Perspectives on Transversal Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Set systems, transversals, partial transversals, and Hall’s theorem . . . . . . . . 2 2.2. Transversal matroids via matrix encodings of set systems . . . . . ....

متن کامل

A Tutte polynomial inequality for lattice path matroids

Let M be a matroid without loops or coloops and let TM be its Tutte polynomial. In 1999 Merino and Welsh conjectured that max(TM (2, 0), TM (0, 2)) ≥ TM (1, 1) for graphic matroids. Ten years later, Conde and Merino proposed a multiplicative version of the conjecture which implies the original one. In this paper we show the validity of the multiplicative conjecture when M is a lattice path matr...

متن کامل

ar X iv : m at h / 04 10 42 5 v 1 [ m at h . C O ] 1 9 O ct 2 00 4 MULTI - PATH MATROIDS

We introduce the minor-closed, dual-closed class of multi-path matroids. We give a polynomial-time algorithm for computing the Tutte polynomial of a multi-path matroid, we describe their basis activities, and we prove some basic structural properties. Key elements of this work are two complementary perspectives we develop for these matroids: on the one hand, multi-path matroids are transversal ...

متن کامل

ar X iv : m at h . C O / 0 41 04 25 v 1 1 9 O ct 2 00 4 MULTI - PATH MATROIDS

We introduce the minor-closed, dual-closed class of multi-path matroids. We give a polynomial-time algorithm for computing the Tutte polynomial of a multi-path matroid, we describe their basis activities, and we prove some basic structural properties. Key elements of this work are two complementary perspectives we develop for these matroids: on the one hand, multi-path matroids are transversal ...

متن کامل

Tutte Polynomials of Generalized Parallel Connections

We use weighted characteristic polynomials to compute Tutte polynomials of generalized parallel connections in the case in which the simplification of the maximal common restriction of the two constituent matroids is a modular flat of the simplifications of both matroids. In particular, this includes cycle matroids of graphs that are identified along complete subgraphs. We also develop formulas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 104  شماره 

صفحات  -

تاریخ انتشار 2003